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Abstract
This paper presents an efficient method for extracting the
second-order sensitivities from a system of implicit nonlin-
ear equations on upcoming graphical processing units (GPU)
dominated computer systems. We design a custom auto-
matic differentiation (AutoDiff) backend that targets highly
parallel architectures by extracting the second-order infor-
mation in batch. When the nonlinear equations are associ-
ated to a reduced space optimization problem, we leverage
the parallel reverse-mode accumulation in a batched adjoint-
adjoint algorithm to compute efficiently the reduced Hessian
of the problem. We apply the method to extract the reduced
Hessian associated to the balance equations of a power net-
work, and show on the largest instances that a parallel GPU
implementation is 30 times faster than a sequential CPU
reference based on UMFPACK

1 Introduction
System of nonlinear equations are ubiquitous in numeri-
cal computing. Solving such nonlinear systems typically
depends on efficient iterative algorithms, as for exam-
ple Newton-Raphson. In this article, we are interested
in the resolution of a parametric system of nonlinear
equations, where the solution depends on a vector of
parameters p ∈ Rnp . These parametric systems are, in
their abstract form, written as

(1.1) Find x such that g(x,p) = 0 ,

where the (smooth) nonlinear function g : Rnx ×Rnp →
Rnx depends jointly on an unknown variable x ∈ Rnx

and the parameters p ∈ Rnp .
The solution x(p) of (1.1) depends implicitly on the

parameters p: of particular interest are the sensitivities
of the solution x(p) with relation to the parameters p.
Indeed, these sensitivities can be embedded inside an
optimization algorithm (if p is a design variable) or in
an uncertainty quantification scheme (if p encodes an
uncertainty). It is well known that propagating the
sensitivities in an iterative algorithm is nontrivial [12].
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Figure 1: Reduced space algorithm. This article fo-
cuses on the last block, in red. If F is an objective
function, the reduced gradient ∇pF and the reduced
Hessian ∇2

ppF can be used in any nonlinear optimiza-
tion algorithm.

Fortunately, there is no need to do so, as we can
exploit the mathematical structure of (1.1) and compute
directly the sensitivities of the solution x(p) using the
Implicit Function Theorem.

By repeating this process one more step, we are
able to extract second-order sensitivities at the solution
x(p). However, this operation is computationally more
demanding and involves the manipulation of third-
order tensors ∇2

xxg,∇2
xpg,∇2

ppg. The challenge is to
avoid forming explicitly such tensors by using reverse
mode accumulation of second-order information, either
explicitly by using the specific structure of the problem
— encoded by the function g — or by using automatic
differentiation.

As illustrated in Figure 1, this paper covers the ef-
ficient computation of the second-order sensitivities of
a nonlinear system (1.1). The sparsity structure of the
problem is passed to a custom Automatic Differentiation
(AutoDiff) backend that automatically generates all the
intermediate sensitivities from the implementation of
g(x,p). To get a tractable algorithm, we use an adjoint
model implementation of the generated first-order sen-
sitivities to avoid explicitly forming third-order deriva-
tive tensors. As an application, we compute the reduced
Hessian of the nonlinear equations corresponding to the
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power flow balance equations of a power grid [29]. The
problem has an unstructured graph structure, leading
to some challenge in the automatic differentiation li-
brary, that we discuss extensively. We show that the
reduced Hessian associated to the power flow equations
can be computed efficiently in parallel, by using batches
of Hessian-vector products. The underlying motivation
is to embed the reduction algorithm in a real-time track-
ing procedure [28], where the reduced Hessian updates
have to be fast to track a suboptimal solution.

In summary, we aim at devising a portable, efficient,
and easily maintainable reduced Hessian algorithm. To
this end, we leverage the expressiveness offered by the
Julia programming language. Due to the algorithm’s
design, the automatic differentiation backend and the
reduction algorithm are transparently implemented on
the GPU without any changes to the algorithm’s core
implementation, thus realizing a composable software
design.

1.1 Contributions Our contribution is a tractable
SIMD algorithm and implementation to evaluate
the reduced Hessian from a parametric system of
nonlinear equations (1.1). This consists of three
closely intertwined components. First, we imple-
ment the nonlinear function g(x,p) using the pro-
gramming language Julia [6] and the portability
layer KernelAbstractions.jl to generate abstract
kernels working on various GPU architectures (CUDA,
ROCm). Second, we develop a custom AutoDiff back-
end on top of the portability layer to extract auto-
matically the first-order sensitivities ∇xg,∇pg and the
second-order sensitivities ∇2

xxg,∇2
xpg,∇2

ppg. Third, we
combine these in an efficient parallel accumulation of
the reduced Hessian associated to a given reduced space
problem. The accumulation involves both Hessian ten-
sor contractions and two sparse linear solves with mul-
tiple right-hand sides. Glued together, the three com-
ponents give a generic code able to extract the second-
order derivatives from a power grid problem, running
in parallel on GPU architectures. Numerical experi-
ments with Volta GPUs (V100) showcase the scalability
of the approach, reaching a 30x faster computation on
the largest instances when compared to a reference CPU
implementation using UMFPACK. Current researches
suggest that a parallel OpenMP power flow implemen-
tation using multi-threading (on the CPU alone) po-
tentially achieves a speed-up of 3 [2] or up to 7 and
70 speed-up for Newton-Raphson and batched Newton-
Raphson [30], respectively. However, multi-threaded
implementations are not the scope of this paper as
we focus on architectures where GPUs are the domi-
nant FLOP contributors for our specific application of

second-order space reduction.

2 Prior Art
In this article we extract the second-order sensitivi-
ties from the system of nonlinear equations using au-
tomatic differentiation (AutoDiff). AutoDiff on Single
Instruction, Multiple Data (SIMD) architectures alike
the CUDA cores on GPUs is an ongoing research ef-
fort. Forward-mode AutoDiff effectively adds tangent
components to the variables and preserves the computa-
tional flow. In addition, a vector mode can be applied to
propagate multiple tangents or directional derivatives at
once. The technique of automatically generating deriva-
tives of function implementations has been investigated
since the 1950s [22, 4].

Reverse- or adjoint-mode AutoDiff reverses the
computational flow and thus incurs a lot of access re-
strictions on the final code. Every read of a vari-
able becomes a write, and vice versa. This leads to
application-specific solutions that exploit the structure
of an underlying problem to generate efficient adjoint
code [8, 13, 15]. Most prominently, the reverse mode is
currently implemented as backpropagation in machine
learning. Indeed, the backpropagation has a long his-
tory (e.g., [9]) with the reverse mode in AutoDiff be-
ing formalized for the first time in [18]. Because of
the limited size and single access pattern of neural net-
works, current implementations [24, 1, 16] reach a high
throughput on GPUs. For the wide field of numerical
simulations, however, efficient adjoints of GPU imple-
mentations remain challenging [20]. In this work we
combine the advantages of GPU implementations of the
gradient with the evaluation of Hessian-vector products
first introduced in [25].

Reduced-space methods have been applied widely in
uncertainty quantification and partial differential equa-
tion (PDE)-constrained optimization [7], and their ap-
plications in the optimization of power grids is known
since the 1960s [11]. However, extracting the second-
order sensitivities in the reduced space has been con-
sidered tedious to implement and hard to motivate on
classical CPU architectures (see [17] for a recent discus-
sion about the computation of the reduced Hessian on
the CPU). To the best of our knowledge, this paper is
the first to present a SIMD focused algorithm leveraging
the GPU to efficiently compute the reduced Hessian of
the power flow equations.

3 Reduced space problem
In Section 3.1 we briefly introduce the power flow
nonlinear equations to motivate our application. We
present in Section 3.2 the reduced space problem asso-
ciated with the power flow problem, and recall in Sec-
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tion 3.3 the first-order adjoint method, used to evaluate
efficiently the gradient in the reduced space, and later
applied to compute the adjoint of the sensitivities.

3.1 Presentation of the power flow problem.
We present a brief overview of the steady-state solution
of the power flow problem. The power grid can be
described as a graph G = {V,E} with nv vertices and ne
edges. The steady state of the network is described by
the following nonlinear equations, holding at all nodes
i ∈ V ,
(3.2)
P inj
i = vi

∑
j∈A(i)

vj(gij cos (θi − θj) + bij sin (θi − θj)) ,

Qinj
i = vi

∑
j∈A(i)

vj(gij sin (θi − θj)− bij cos (θi − θj)) ,

where at node i, (P inj
i and Qinj

i ) are respectively the
active and reactive power injections; vi is the voltage
magnitude; θi the voltage angle; and A(i) ⊂ V is the
set of adjacent nodes: for all j ∈ A(i), there exists a line
(i, j) connecting node i and node j. The values gij and
bij are associated with the physical characteristics of the
line (i, j). Generally, we distinguish the (PV ) nodes —
associated to the generators — from the (PQ) nodes
comprising only loads. We note that the structure of
the nonlinear equations (3.2) depends on the structure
of the underlying graph through the adjacencies A(·).

We rewrite the nonlinear equations (3.2) in the
standard form (1.1). At all nodes the power injection
P inj
i should match the net production P g

i minus the
load P d

i :
(3.3)

g(x,p) =

P inj
pv − P g + P d

pv

P inj
pq + P d

pq

Qinj
pq +Qd

pd

 = 0 with x =

θpvθpq
vpq

 .
In (3.3), we have selected only a subset of the power
flow equations (3.2) to ensure that the nonlinear system
g(x,p) = 0 is invertible with respect to the state x. The
unknown variable x corresponds to the voltage angles
at the PV and PQ nodes and the voltage magnitudes at
the PQ nodes. However, in contrast to the variable x,
we have some flexibility in choosing the parameters p.

In optimal power flow (OPF) applications, we are
looking at minimizing a given operating cost f : Rnx ×
Rnp → R (associated to the active power generations
P g) while satisfying the power flow equations (3.3). In
that particular case, p is a design variable associated to
the active power generations and the voltage magnitude
at PV nodes: p = (P g,vpv). We define the OPF
problem as

(3.4) min
x,p

f(x,p) subject to g(x,p) = 0 .

3.2 Projection in the reduced space. We note
that in Equation (3.3), the functional g is continuous
and that the dimension of the output space is equal to
the dimension of the input variable x. Thanks to the
particular network structure of the problem (encoded
by the adjacencies A(·) in (3.2)), the Jacobian ∇xg is
sparse.

Generally, the nonlinear system (3.3) is solved
iteratively with a Newton-Raphson algorithm. If at a
fixed parameter p the Jacobian ∇xg is invertible, we
compute the solution x(p) iteratively, starting from an
initial guess x0: xk+1 = xk − (∇xgk)−1g(xk,p) for
k = 1, . . . ,K. We know that if x0 is close enough to
the solution, then the convergence of the algorithm is
quadratic.

With the projection completed, the optimization
problem (3.4) rewrites in the reduced space as

(3.5) min
p

F (p) := f
(
x(p),p

)
,

reducing the number of optimization variables from
nx + np to np, while at the same time eliminating all
equality constraints in the formulation.

3.3 First-Order Adjoint Method. With the re-
duced space problem (3.5) defined, we compute the
reduced gradient ∇pF required for the reduced space
optimization routine. By definition, as x(p) satisfies
g(x(p),p) = 0, the chain rule yields∇pF = ∇pf+∇xf ·
∇px with ∇px = −

(
∇xg)−1∇pg. However, evaluating

the full sensitivity matrix ∇px involves the resolution of
nx linear system. On the contrary, the adjoint method
requires solving a single linear system. For every dual
λ ∈ Rnx , we introduce a Lagrangian function defined as

(3.6) `(x,p,λ) := f(x,p) + λ>g(x,p) .

If x satisfies g(x,p) = 0, then the Lagrangian `(x,p,λ)
does not depend on λ and we get `(x,p,λ) = F (p).
By using the chain rule, the total derivative of ` with
relation to the parameter p satisfies

dp` =
(
∇xf · ∇px+∇pf

)
+ λ>

(
∇xg · ∇ux+∇pg

)
=
(
∇pf + λ>∇pg

)
+
(
∇xf + λ>∇xg

)
∇px .

We observe that by setting the first-order adjoint to λ =
−(∇xg)−>∇xf

>, the reduced gradient ∇pF satisfies

(3.7) ∇pF = ∇p` = ∇pf + λ>∇pg ,

with λ evaluated by solving a single linear system.

4 Parallel reduction algorithm
It remains now to compute the reduced Hessian. We
present in Section 4.1 the adjoint-adjoint method and
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describe in Section 4.2 how to evaluate efficiently the
second-order sensitivities with Autodiff. By combining
together the Autodiff and the adjoint-adjoint method,
we devise in Section 4.3 a parallel algorithm to compute
the reduced Hessian.

4.1 Second-Order Adjoint over Adjoint
Method. Among the different Hessian reduction
schemes presented in [23] (direct-direct, adjoint-direct,
direct-adjoint, adjoint-adjoint), the adjoint-adjoint
method has two key advantages to evaluate the reduced
Hessian on the GPU. First, it avoids forming explicitly
the dense tensor ∇2

ppx and the dense matrix ∇px,
leading to important memory savings on the larger
cases. Second, it enables us to compute the reduced
Hessian slice by slice, in an embarrassingly parallel
fashion.

Conceptually, the adjoint-adjoint method extends
the adjoint method (see Section 3.3) to compute the
second-order derivatives ∇2f ∈ Rnp×np of the objec-
tive function f((x(p),p). The adjoint-adjoint method
computes the matrix ∇2f slice by slice, by using np
Hessian-vector products (∇2f)w (with w ∈ Rnp).

By definition of the first-order adjoint λ, the deriva-
tive of the Lagrangian function (3.6) with respect to x
is null:

(4.8) ∇xf(x,p) + λ>∇xg(x,p) = 0 .

Let ĝ(x,p,λ) := ∇xf(x,p) + λ>∇xg(x,p). We define
a new Lagrangian associated with (4.8) by introducing
two second-order adjoints z,ψ ∈ Rnx and a vector
w ∈ Rnp :

(4.9) ˆ̀(x,p,w,λ; z,ψ) := (∇p`)
>w+

z>g(x,p) +ψ>ĝ(x,p,λ) .

By computing the derivative of ˆ̀ and eliminating the
terms corresponding to ∇xλ and ∇pλ, we get the fol-
lowing expressions for the second-order adjoints (z,ψ):

(4.10)

{
(∇xg)z = −

(
∇pg

)>
w

(∇xg)>ψ = −(∇2
xp`)w − (∇2

xx`)z .

Then, the reduced-Hessian-vector product reduces to

(4.11)
(
∇2f

)
w = (∇2

pp`)w + (∇2
px`)

>z + (∇pg)>ψ .

As ∇2` = ∇2f + λ>∇2g, we observe that both Equa-
tions (4.10) and (4.11) require evaluating the product
of the three tensors ∇2

xxg, ∇2
xpg, and ∇2

ppg, on the left
with the adjoint λ and on the right with the vector
w. Evaluating the Hessian-vector products (∇2

xxf)w,
(∇2

xpf)w and (∇2
ppf)w is generally easier, as f is a

real-valued function.

4.2 Second-order derivatives. To avoid forming
the third-order tensors ∇2g in the reduction procedure
presented previously in Section 4.1, we exploit the
particular structure of Equations (4.10) and (4.11) to
implement with automatic differentiation an adjoint-
tangent accumulation of the derivative information. For
any adjoint λ ∈ Rnx and vector w ∈ Rnp , we build a
tangent v = (z,w) ∈ Rnx+np , with z ∈ Rnx solution of
the first system in Equation (4.10). Then, the adjoint-
forward accumulation evaluates a vector y ∈ Rnx+np as

(4.12) y =

(
λ>∇2

xxg λ>∇2
xpg

λ>∇2
pxg λ>∇2

ppg

)
v ,

(the tensor projection notation will be introduced more
thoroughly in Section 4.2.3). We detail next how to
compute the vector y by using forward-over-reverse
AutoDiff.

4.2.1 AutoDiff. AutoDiff transforms a code that im-
plements a multivariate vector function y = g(x), Rn 7→
Rm with inputs x and outputs y into its differenti-
ated implementation. We distinguish two modes of Au-
toDiff. Applying AutoDiff in forward mode generates
the code for evaluating the Jacobian vector product
y(1) = ∇g(x) · x(1), with the superscript (1) denoting
first-order tangents—also known as directional deriva-
tives. The adjoint or reverse mode, or backpropagation
in machine learning, generates the code of the trans-
posed Jacobian vector product x(1) = y(1) · ∇g(x)T ,
with the subscript (1) denoting first-order adjoints. The
adjoint mode is useful for computing gradients of scalar
functions (m = 1) (such as Lagrangian) at a cost of
O (cost(g)).

4.2.2 Sparse Jacobian Accumulation. To extract
the full Jacobian from a tangent or adjoint AutoDiff
implementation, we have to let x(1) and y(1) go over
the Cartesian basis of Rn and Rm, respectively. This
incurs the difference in cost for the Jacobian accumula-
tion: O (n) · cost(g) for the tangent Jacobian model and
O (m) · cost(g) for the adjoint Jacobian model. In our
case we need the full square (m = n) Jacobian ∇xg of
the nonlinear function (1.1) to run the Newton–Raphson
algorithm. The tangent model is preferred whenever
m ≈ n. Indeed, the adjoint model incurs a complete
reversal of the control flow and thus requires storing in-
termediate variables, leading to high cost in memory.
Furthermore, SIMD architectures are particularly well
suited for propagating the n independent tangent Jaco-
bian vector products in parallel [26].

If n becomes larger (»1000), however, the memory
requirement of all n tangents may exceed the GPU’s
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Figure 2: Jacobian compression via column coloring.
On the left, the original Jacobian. On the right, the
compressed Jacobian.

memory. Since our Jacobian is sparse, we apply the
technique of Jacobian coloring that compresses indepen-
dent columns of the Jacobian and reduces the number of
required seeding tangent vectors from n to the number
of colors c (see Figure 2).

4.2.3 Second-Order Derivatives. For higher-
order derivatives that involve derivative tensors (e.g.,
Hessian ∇2g ∈ Rm×n×n) we introduce the projection
notation < · · · > introduced in [21] and illustrated in
Figure 3 with < x(1),∇2g(x),x(1) >, whereby adjoints
are projected from the left to the Jacobian and tangents
from the right. To compute second-order derivatives
and the Hessian projections in Equation (4.12), we use
the adjoint model implementation given by
(4.13)
y = g(x), x(1) =< y(1),∇g(x) >= y(1) · ∇g(x)T ,

and we apply over it the tangent model given by
(4.14)
y = g(x), y(1) =< ∇g(x),x(1) >= ∇g(x) · x(1) ,

yielding
(4.15)
y = g(x),
y(2) =< ∇g(x),x(2) >,
and
x(1) =< y(1),∇g(x) >,

x
(2)
(1) =< y(1),∇2g(x),x(2) > + < y

(2)
(1) ,∇g(x) > .

Notice that every variable has now a value component
and three derivative components denoted by (1), (2),
and (2)

(1) amounting to first-order adjoint, second-order
tangent, and second-order tangent over adjoint, respec-
tively. In Section 4.3, we compute the term x

(2)
(1) on the

GPU by setting y(2)
(1) = 0 and extracting the result from

x
(2)
(1) ∈ Rn.

X X =

n

n

m

Figure 3: Hessian derivative tensor projection <
y(1),∇2g(x),x(2) >. Notice that the Hessian slices
along the n directions are symmetric.

4.3 Reduction Algorithm. We are now able to
write down the reduction algorithm to compute the
Hessian-vector products ∇2F · w. We first present a
sequential version of the algorithm, and then detail how
to design a parallel variant of the reduction algorithm.

Algorithm 1: Reduction algorithm
Data: Vector w ∈ Rnp

SpMul: b =
(
∇ug

)
w ;

SparseSolve: (∇xg)z = −b ;
TensorProjection: Compute (yx,yp)
with (4.12) and v = (z,w);
SparseSolve: (∇xg)>ψ = −yx ;
MulAdd: (∇2F )w = yp + (∇pg)>ψ ;

4.3.1 Sequential algorithm. We observe that by
default the Hessian reduction algorithm encompasses
four sequential steps:

1. SparseSolve: Get the second-order adjoint z by
solving the first linear system in (4.10).

2. TensorProjection: Define the tangent v :=
(z,w), and evaluate the second-order derivatives
using (4.12). TensorProjection returns a vec-
tor y = (yx,yp), with
(4.16)
yx = < λ>,∇2

xxg,z > + < λ>,∇2
xpg,w > +

< ∇2
xxf, z > + < ∇2

xpf,w > ,

yp = < λ>,∇2
pxg,z > + < λ>,∇2

ppg,w > +

< ∇2
pxf, z > + < ∇2

ppf,w > ,

with “<>" denoting the derivative tensor projec-
tion introduced in Section 4.2.3 (and illustrated in
Figure 3).

3. SparseSolve: Get the second-order adjoint ψ by
solving the second linear system in Equation (4.10):
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(∇xg)>ψ = −yx.

4. SpMulAdd: Compute the reduced Hessian-vector
product with Equation (4.11).

The first SparseSolve differs from the second
SparseSolve since the left-hand side is different:
the first system considers the Jacobian matrix (∇xg),
whereas the second system considers its transpose
(∇xg)>.

To compute the entire reduced Hessian ∇2F , we
have to let w go over all the Cartesian basis vectors
of Rnp . The parallelization over these basis vectors is
explained in the next paragraph.

4.3.2 Parallel Algorithm. Instead of computing
the Hessian vector products (∇2F )w1, · · · , (∇2F )wn

one by one, the parallel algorithm takes as in-
put a batch of N vectors W =

(
w1, · · · ,wN

)
and evaluates the Hessian-vector products(
(∇2F )w1, · · · , (∇2F )wN

)
in a parallel fashion.

By replacing respectively the SparseSolve and
TensorProjection blocks by BatchSparseSolve
and BatchTensorProjection, we get the parallel
reduction algorithm presented in Algorithm 2 (and il-
lustrated in Figure 4). On the contrary to Algorithm 1,
the block BatchSparseSolve solves a sparse linear
system with multiple right-hand-sides B = (∇pg)W ,
and the block BatchTensorProjection runs the
Autodiff algorithm introduced in Section 4.2 in batch.
As explained in the next section, both operations are
fully amenable to the GPU.

Algorithm 2: Parallel reduction algorithm
Data: N vectors w1, · · · ,wN ∈ Rnp

Build W = (w1, · · · ,wN ) ,W ∈ Rnp×N ;
SpMul: B =

(
∇pg

)
W ,B ∈ Rnx×N ,

∇pg ∈ Rnx×np ;
BatchSparseSolve: (∇xg)Z = −B ;
BatchTensorProjection: Compute
(Yx, Yp) with V = (Z,W ) ;
BatchSparseSolve: (∇xg)>Ψ = −Yx ;
SpMulAdd: (∇2F )W = Yp + (∇pg)>Ψ ;

5 GPU Implementation
In the previous section, we have devised a par-
allel algorithm to compute the reduced Hessian.
This algorithm involves two key ingredients, both
running in parallel: BatchSparseSolve and
BatchTensorProjection. We present in Sec-
tion 5.1 how to implement BatchTensorProjection
on GPU by leveraging the Julia language. Then, we

focus on the parallel resolution of BatchSparseSolve
in Section 5.2. The final implementation is presented
in Section 5.3.

5.1 Batched AutoDiff.

5.1.1 AutoDiff on GPU. Our implementation at-
tempts to be architecture agnostic, and to this end we
rely heavily on the just-in-time compilation capabilities
of the Julia language. Julia has two key advantages for
us: (i) it implements state-of-the-art automatic differ-
entiation libraries and (ii) its multiple dispatch capa-
bility allows to write code in an architecture agnostic
way. Combined together, this allows to run AutoD-
iff on GPU accelerators. On the architecture side we
rely on the array abstraction implemented by the pack-
age GPUArrays.jl [5] and on the kernel abstraction
layer KernelAbstractions.jl. The Julia commu-
nity provides three GPU backends for these two pack-
ages: NVIDIA, AMD, and Intel oneAPI. Currently,
CUDA.jl is the most mature package, and we are lever-
aging this infrastructure to run our code on an x64/PPC
CPU and NVIDIA GPU. In the future our solution will
be rolled out transparently onto AMD and Intel accel-
erators with minor code changes.

5.1.2 Forward Evaluation of Sparse Jacobians.
The reduction algorithm in Section 4.3 requires (i) the
Jacobian ∇xg to form the linear system in (4.10) and
(ii) the Hessian vector product of λ>∇2g in (4.16).
We use the Julia package ForwardDiff.jl [27]
to apply the first-order tangent model (4.14) by in-
stantiating every variable as a dual type defined as
T1S{T,C} = ForwardDiff.Dual{T, C}}, where
T is the type (double or float) and C is the
number of directions that are propagated together
in parallel. This allows us to apply AutoDiff
both on the CPU and on the GPU in a vector-
ized fashion, through a simple type change: for
instance, Array{TIS{T, C}}(undef, n) instanti-
ates a vector of dual numbers on the CPU, whereas
CuArray{TIS{T, C}}(undef, n) does the same
on a CUDA GPU. (Julia allows us to write code where
all the types are abstracted away). This, combined
with KernelAbstractions.jl, allows us to write
a portable residual kernel for g(x,p) that is both dif-
ferentiable and architecture agnostic. By setting the
number of Jacobian colors c to the parameter C of type
T1S{T,C} we leverage the GPUs by propagating the
tangents in a SIMD way.

5.1.3 Forward-over-Reverse Hessian Projec-
tions. As opposed to the forward mode, generating ef-
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W B (∇2f)W

z1 y1 ψ1

z2 y2 ψ2

z3 y3 ψ3

z4 y4 ψ4

sync sync

SpMul

B = (∇pg)W

BatchSparseSolve

zi = −(∇xg)
−1bi

BatchAutoDiff BatchSparseSolve

ψi = −(∇xg)
−>yi

SpMullAdd

Figure 4: Parallel computation of the reduced Hessian vector products on the GPU

ficient adjoint code for GPUs is known to be hard. In-
deed, adjoint automatic differentiation implies a rever-
sal of the computational flow, and in the backward pass
every read of a variable translates to a write adjoint,
and vice versa. The latter is particularly complex for
parallelized algorithms, especially as the automatic par-
allelization of algorithms is hard. For example, an em-
barrassingly parallel algorithm where each process reads
the data of all the input space leads to a challenging
race condition in its adjoint. Current state-of-the-art
AutoDiff tools use specialized workarounds for certain
cases. However, a generalized solution to this problem
does not exist. The promising AutoDiff tool Enzyme
[19] is able to differentiate CUDA kernels in Julia, but
it is currently not able to digest all of our code.

To that end, we hand differentiate our GPU kernels
for the forward-over-reverse Hessian projection. We
then apply ForwardDiff to these adjoint kernels
to extract second-order sensitivities according to the
forward-over-reverse model. Notably, our test case (see
Section 3.1) involves reversing a graph-based problem
(with vertices V and edges E). The variables of the
equations are defined on the vertices. To adjoin or
reverse these kernels, we pre-accumulate the adjoints
first on the edges and then on the nodes, thus avoiding
a race condition on the nodes. This process yields
a fully parallelizable adjoint kernel. Unfortunately,
current AutoDiff tools are not capable of detecting such
structural properties. Outside the kernels we use a tape
(or stack) structure to store the values computed in the
forward pass and to reuse them in the reverse (split
reversal). The kernels themselves are written in joint
reversal, meaning that the forward and reverse passes
are implemented in one function evaluation without
intermediate storage of variables in a data structure.
For a more detailed introduction to writing adjoint code
we recommend [14].

5.2 Batched Sparse Linear Algebra. The block
BatchSparseSolve presented in Section 4.3 requires

the resolution of two sparse linear systems with multi-
ple right-hand sides, as illustrated in Equation (4.10).
This part is critical because in practice a majority of
the time is spent inside the linear algebra library in
the parallel reduction algorithm. To this end, we have
wrapped the library cuSOLVER_RF in Julia to get an
efficient LU solver on the GPU. For any sparse matrix
A ∈ Rn×n, the library cuSOLVER_RF takes as input
an LU factorization of the matrix A precomputed on
the host, and transfers it to the device. cuSOLVER_RF
has two key advantages to implement the resolution of
the two linear systems in BatchSparseSolve. (i) If a
new matrix Ã needs to be factorized and has the same
sparsity pattern as the original matrix A, the refactor-
ization routine proceeds directly on the device, without
any data transfer with the host (allowing to match the
performance of the state-of-the-art CPU sparse library
UMFPACK [10]). (ii) Once the LU factorization has
been computed, the forward and backward solves for
different right-hand sides b1, · · · , bN can be computed
in batch mode.

5.3 Implementation of the Parallel Reduction.
By combining the batch AutoDiff with the batch sparse
linear solves of cuSOLVER_RF, we get a fully parallel
algorithm to compute the reduced Hessian projection.
We compute the reduced Hessian ∇2F ∈ Rnp×np by
blocks of N Hessian-vector products. If we have enough
memory to set N = np, we can compute the full
reduced Hessian in one batch reduction. Otherwise, we
set N < np and compute the full reduced Hessian in
Nb = div(n,N) + 1 batch reductions.

Tuning the number of batch reductions N is non-
trivial and depends on two considerations. How
efficient is the parallel scaling when we run the
two parallel blocks BatchTensorProjection and
BatchSparseSolve? and Are we fitting into the de-
vice memory? This second consideration is indeed one
of the bottlenecks of the algorithm. In fact, if we look
more closely at the memory usage of the parallel re-
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duced Hessian, we observe that the memory grows lin-
early with the number of batches N . First, in the block
BatchTensorProjection, we need to duplicate N
times the tape used in the reverse accumulation of the
Hessian in Section 5.1, leading to memory increase from
O(MT ) to O(MT × N), with MT the memory of the
tape. The principle is similar in SparseSolve, since
the second-order adjoints z and ψ are also duplicated in
batch mode, leading to a memory increase from O(2nx)
to O(2nx×N). This is a bottleneck on large cases when
the number of variables nx is large.

The other bottleneck arises when we com-
bine together the blocks BatchSparseSolve
and BatchTensorProjection. Indeed,
BatchTensorProjection should wait for the
first block BatchSparseSolve to finish its op-
erations. The same issue arises when passing the
results of BatchTensorProjection to the second
BatchSparseSolve block. As illustrated by Figure 4,
we need to add two explicit synchronizations in the
algorithm. Allowing the algorithm to run the reduction
algorithm in a purely asynchronous fashion would
require a tighter integration with cuSOLVER_RF.

6 Numerical experiments
In this section we provide extensive benchmarking re-
sults that investigate whether the computation of the
reduced Hessian ∇2f with Algorithm 2 is well suited
for SIMD on GPU architectures. As a comparison,
we use a CPU implementation based on the sparse LU
solver UMFPACK, with iterative refinement disabled1

(it yields no numerical improvement, however, consider-
ably speeds up the computation). We show that on the
largest instances our GPU implementation is 30 times
faster than its sequential CPU equivalent and provide
a path forward to further improve our implementation.
Then, we illustrate that the reduced Hessian computed
is effective to track a suboptimal in a real-time setting.

6.1 Experimental Setup

6.1.1 Hardware. Our workstation Moonshot is pro-
vided by Argonne National Laboratory. All the exper-
iments run on a NVIDIA V100 GPU (with 32GB of
memory) and CUDA 11.3. The system is equipped
with a Xeon Gold 6140, used to run the experiments
on the CPU (for comparison). For the software, the
workstation works with Ubuntu 18.04, and we use Ju-
lia 1.6 for our implementation. We rely on our pack-
age KernelAbstractions.jl and GPUArrays.jl
to generate parallel GPU code.

1We set the parameter UMFPACK_IRSTEP to 0.

All the implementation is open-sourced, and an
artifact is provided to reproduce the numerical results2.

6.1.2 Benchmark library. The test data represents
various case instances (see Table 1) in the power grid
community obtained from the open-source benchmark
library PGLIB [3]. The number in the case name
indicates the number of buses (graph nodes) nv and
the number of lines (graph edges) ne in the power grid:
nx is the number of variables, while np is the number of
parameters (which is also equal to the dimension of the
reduced Hessian and the parameter space Rnp).

Case nv ne nx np
IEEE118 118 186 181 107
IEEE300 300 411 530 137
PEGASE1354 1,354 1,991 2,447 519
PEGASE2869 2,869 4,582 5,227 1,019
PEGASE9241 9,241 16,049 17,036 2,889
GO30000 30,000 35,393 57,721 4,555

Table 1: Case instances obtained from PGLIB

6.2 Numerical Results

Cases Dimensions
W ∈ Rnp×N B ∈ Rnx×N ∇2f ∈ Rnp×np

IEEE118 107×N 181×N 107× 107
IEEE300 137×N 530×N 137× 137
PEGASE1354 519×N 2, 447×N 519× 519
PEGASE2869 1, 019×N 5, 227×N 1, 019× 1, 019
PEGASE9241 17, 036×N 17, 036×N 2, 889× 2, 889
GO30000 30, 000×N 35, 393×N 4, 555× 4, 555

Table 2: Size of key matrices (seed matrix W , multiple
right-hand sides B, and final reduced Hessian ∇2F ) for
a batch size of N . On GO30000, instantiating the three
matrices W,B,∇2F for N = 256 already takes 286MB
in the GPU memory.

.

6.2.1 Benchmark reduced Hessian evaluation.
For the various problems described in Table 1, we
benchmarked the computation of the reduced Hessian
∇2F for different batch sizes N . Each batch computes
N columns of the reduced Hessian (which has a fixed
size of np × np). Hence, the algorithm requires Nb =
div(np, N) + 1 number of batches to evaluate the full
Hessian.

In Figure 5, we compare on various instances (see
Table 2) the reference CPU implementation together
with the full reduced Hessian computation ∇2F on
the GPU (with various batch sizes N). The figure is

2available on https://github.com/exanauts/Argos.jl/
tree/master/papers/pp2022
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displayed in log-log scale, to better illustrate the linear
scaling of the algorithm. In addition, we scale the time
taken by the algorithm on the GPU by the time taken to
compute the full reduced Hessian on the CPU: a value
below 1 means that the GPU is faster than the CPU.

We observe that the larger the number of batches
N , the faster the GPU implementation is. This proves
that the GPU is effective at parallelizing the reduction
algorithm, with a scaling almost linear when the number
of batches is small (N < 32 = 25). However, we
reach the scalability limit of the GPU as we increase the
number of batches N (generally, when N ≥ 256 = 28).
Comparing to the CPU implementation, the speed-up
is not large on small instances (≈ 2 for IEEE118 and
IEEE300), but we get up to a 30 times speed-up on the
largest instance GO30000, when using a large number
of batches.
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Figure 5: Parallel scaling of the total reduced Hessian
accumulation ∇2F with batch size N : A ratio value
< 1 indicates a faster runtime compared with that of
UMFPACK and AutoDiff on the CPU in absolute time.
The dotted lines indicate the linear scaling reference.
Lower values imply a higher computational intensity.

Figure 6 shows the relative time spent in the linear
algebra and the automatic differentiation backend. On
the CPU, we observe that UMFPACK is very efficient to
perform the linear solves (once the iterative refinement
is deactivated). However, a significant amount of the
total running time is spent inside the AutoDiff kernel.
We get a similar behavior on the GPU: the batched au-
tomatic differentiation backend leads to a smaller speed-
up than the linear solves, increasing the fraction of the
total runtime spent in the block BatchAutoDiff.

6.2.2 Discussion. Our analysis shows that the re-
duced Hessian scales with the batch size, while hitting
an utilization limit for larger test cases. Our kernels
may still have potential for improvement, thus further
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Figure 6: Decomposition of the runtime against the
number of batch N , on case PEGASE 9241. N = 1 cor-
responds to the CPU implementation. The derivative
computation is the dominant kernel.

improving utilization scaling as long as we do not hit
the memory capacity limit. However, the sparsity of the
power flow problems represents a worst-case problem for
SIMD architectures, common in graph-structured appli-
cations. Indeed, in contrast to PDE-structured prob-
lems, graphs are difficult to handle in SIMD architec-
tures because of their unstructured sparsity patterns.

6.3 Real-time tracking algorithm. Finally, we il-
lustrate the benefits of our reduced Hessian algorithm
by embedding it in a real-time tracking algorithm.

Let wt = (P d
t ,Q

d
t ) be the loads in (3.3), indexed by

time t and updated every minute. In that setting, the
reduced space problem is parameterized by the loadswt:

(6.17) min
pt

F (pt;wt) := f
(
x(pt),pt;wt

)
.

For all time t, the real-time algorithm aims at tracking
the optimal solutions p?t associated with the sequence
of problems (6.17). To achieve this, we update the
tracking point pt at every minute, by exploiting the
curvature information provided by the reduced Hessian.
The procedure is the following:

• Step 1: For new loads wt = (P d
t ,Q

d
t ), compute

the reduced gradient gt = ∇pF (pt;wt) and the
reduced Hessian Ht = ∇2

ppF (pt;wt) using Algo-
rithm 2.

• Step 2: Update the tracking control pt with
pt+1 = pt + dt, where dt is a descent direction
computed as solution of the dense linear system

(6.18) Ht dt = −gt .
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In practice, we use the dense Cholesky factorization
implemented in cuSOLVER to solve the dense linear
system (6.18) efficiently on the GPU.

We compare the tracking controls {pt}t=1,··· ,T with
the optimal solutions {p?t }t=1,··· ,T associated to the se-
quence of optimization problems (6.17). Note that solv-
ing each (6.17) to optimality is an expensive operation,
involving calling a nonlinear optimization solver. On the
contrary, the real-time tracking algorithm involves only
(i) updating the gradient and the Hessian for the new
loads wt and (ii) solving the dense linear system (6.18).

Figure 7: Performance of the real-time tracking algo-
rithm on PEGASE1354, compared with the optimal
solutions. The real-time algorithm is applied every
minute, during one hour. The first plot shows the evo-
lution of the operating cost along time, whereas the sec-
ond plot shows the evolution of the absolute difference
between the tracking control pt and the optimum p?t .

We depict in Figure 7 the performance of the real-
time tracking algorithm, compared with an optimal so-
lution computed by a nonlinear optimization solver. In
the first subplot, we observe that the operating cost as-
sociated to {pt}t is close to the optimal cost associated
to {p?t }t. The second subplot depicts the evolution of
the absolute difference |pt − p?t |, component by compo-
nent. We observe that the difference remains tractable:
the median (Quantile 50%) is almost constant, and close
to 10−2 (which in our case is not a large deviation from
the optimum) whereas the maximum difference remains
below 0.5. At each time t, the real-time algorithm takes
in average 0.10s to update pt on the GPU (withN = 256
batches), comparing to 2.22s on the CPU (see Table 3).
We achieve such a 20 times speed-up on the GPU as
(i) the evaluation of the reduced Hessian is faster on
the GPU (ii) we do not have any data transfer between

the host and the device to perform the dense Cholesky
factorization with cusolver. Hence, this real-time use
case leverages the high parallelism of our algorithm to
evaluate the reduced Hessian.

Step 1 (s) Step 2 (s) Total (s)
CPU 1.41 0.81 2.22
GPU 0.05 0.05 0.10

Table 3: Time to update the tracking point pt for
case1354pegase with the real-time algorithm, on the
CPU and on the GPU.

7 Conclusion
In this paper we have devised and implemented a prac-
tical batched algorithm (see Algorithm 2) to extract on
SIMD architectures the second-order sensitivities from a
system of nonlinear equations. Our implementation on
NVIDIA GPUs leverages the programming language Ju-
lia to generate portable kernels and differentiated code.
We have observed that on the largest cases the batch
code is 30x faster than a reference CPU implementa-
tion using UMFPACK. This is important for upcoming
large-scale computer systems where availability of gen-
eral purpose CPUs is very limited. We have illustrated
the interest of the reduced Hessian when used inside a
real-time tracking algorithm. Our solution adheres to
the paradigm of differential and composable program-
ming, leveraging the built-in metaprogramming capabil-
ities of Julia. In the future, we will investigate extend-
ing the method to other classes of problems (such as
uncertainty quantification, optimal control, trajectory
optimization, or PDE-constrained optimization).
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